By Topic

Estimating the ground truth from multiple individual segmentations incorporating prior pattern analysis with application to skin lesion segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiang Li ; Univ. of Edinburgh, Edinburgh, UK ; Aldridge, B. ; Fisher, R. ; Rees, J.

Having ground truth is critical for evaluating segmentation algorithms and estimating the ground truth from a collection of manual segmentations remains a hard problem. A proper estimation approach should take into account and compensate for the inter-rater variation. In this paper, we conduct an analysis of manual segmentations in order to have a better understanding of the pattern of the variation and investigate whether incorporating such pattern information will improve the ground truth estimation. We propose a level-set based approach that solves the ground truth estimation in a probabilistic formulation. The prior pattern information is incorporated into the estimation model by adding a specially designed term in the energy function. Experiments on both synthetic and real data show that this prior information helps to find a more accurate estimate of the ground truth.

Published in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on

Date of Conference:

March 30 2011-April 2 2011