By Topic

Dynamic online registration guided collaborative tracking of lung tumor movement in fluoroscopic videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Baiyang Liu ; Comput. Sci., Rutgers Univ., Piscataway, NJ, USA ; Lin Yang ; Kulikowski, C. ; Leiguang Gong
more authors

Tracking of the lung tumor movement in fluoroscopic video sequences is clinically significant and challenging problem due to the blurred appearance, sternum occlusion, and complicate intra- and inter- fractional motion. This introduces landmark ambiguity for accurate contour tracking. As the boundary of the lung, or part of the lung, is usually clear and can be accurately tracked, we propose a novel method to compute an accurate prior for the tumor based on the motion registration of the lung. For adapting to the appearance changes due to motion and reducing the label of annotation, we propose to apply online updated collaborative trackers to refine the boundary of the tumor. This motion registration guided online collaborative tacking algorithm is proven to be successful in real clinical dataset, especially for cases with unclear tumor boundaries. Excellent results are obtained on twelve motion sequences which contains 3531 frames in total.

Published in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on

Date of Conference:

March 30 2011-April 2 2011