Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Farag, A. ; Dept. of Electr. & Comput. Eng., Univ. of Louisville, Louisville, KY, USA ; Ali, A. ; Graham, J. ; Farag, A.
more authors

This paper examines the effectiveness of geometric feature descriptors, common in computer vision, for false positive reduction and for classification of lung nodules in low dose CT (LDCT) scans. A data-driven lung nodule modeling approach creates templates for common nodule types, using active appearance models (AAM); which are then used to detect candidate nodules based on optimum similarity measured by the normalized cross-correlation (NCC). Geometric feature descriptors (e.g., SIFT, LBP and SURF) are applied to the output of the detection step, in order to extract features from the nodule candidates, for further enhancement of output and possible reduction of false positives. Results on the clinical ELCAP database showed that the descriptors provide 2% enhancements in the specificity of the detected nodule above the NCC results when used in a k-NN classifier. Thus quantitative measures of enhancements of the performance of CAD models based on LDCT are now possible and are entirely model-based. Most importantly, our approach is applicable for classification of nodules into categories and pathologies.

Published in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on

Date of Conference:

March 30 2011-April 2 2011