By Topic

Resource allocation for secure OFDMA decode-and-forward relay networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ng, D.W.K. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Schober, R.

In this paper, we formulate an optimization problem for resource allocation and scheduling in orthogonal frequency division multiple access (OFDMA) half-duplex decode-and-forward (DF) relay assisted networks. Our problem formulation takes into account artificial noise generation to combat a multiple antenna eavesdropper. The secrecy data rate, power, and sub-carrier allocation policies are optimized to maximize the average secrecy outage capacity (bit/s/Hz securely delivered to the users via relays). The optimization problem is solved by dual decomposition which results in an efficient iterative algorithm. Simulation results illustrate that the proposed iterative algorithm converges in a small number of iterations and guarantees a non-zero secrecy date rate for a given target secrecy outage probability.

Published in:

Information Theory (CWIT), 2011 12th Canadian Workshop on

Date of Conference:

17-20 May 2011