By Topic

Direction-of-Arrival Estimation of Wideband Signals via Covariance Matrix Sparse Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang-Meng Liu ; Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China ; Zhi-Tao Huang ; Yi-Yu Zhou

This paper focuses on direction-of-arrival (DOA) estimation of wideband signals, and a method named wideband covariance matrix sparse representation (W-CMSR) is proposed. In W-CMSR, the lower left triangular elements of the covariance matrix are aligned to form a new measurement vector, and DOA estimation is then realized by representing this vector on an over-complete dictionary under the constraint of sparsity. The a priori information of the incident signal number is not needed in W-CMSR, and no spectral decomposition or focusing is introduced. Simulation results demonstrate the satisfying performance of W-CMSR in wideband DOA estimation in various settings. Moreover, theoretical analysis and numerical examples show how many simultaneous signals can be separated by W-CMSR on typical array geometries, and that the half-wavelength spacing restriction in avoiding ambiguity can be relaxed from the highest to the lowest frequency of the incident wideband signals.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 9 )