By Topic

A Method for Integrating Expert Knowledge When Learning Bayesian Networks From Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andrés Cano ; Dept. of Comput. Sci. & Artificial Intell., Univ. of Granada, Granada, Spain ; Andrés R. Masegosa ; Serafín Moral

Automatic learning of Bayesian networks from data is a challenging task, particularly when the data are scarce and the problem domain contains a high number of random variables. The introduction of expert knowledge is recognized as an excellent solution for reducing the inherent uncertainty of the models retrieved by automatic learning methods. Previous approaches to this problem based on Bayesian statistics introduce the expert knowledge by the elicitation of informative prior probability distributions of the graph structures. In this paper, we present a new methodology for integrating expert knowledge, based on Monte Carlo simulations and which avoids the costly elicitation of these prior distributions and only requests from the expert information about those direct probabilistic relationships between variables which cannot be reliably discerned with the help of the data.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:41 ,  Issue: 5 )