Cart (Loading....) | Create Account
Close category search window
 

Feature-Based Sparse Representation for Image Similarity Assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Li-Wei Kang ; Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan ; Chao-Yung Hsu ; Hung-Wei Chen ; Chun-Shien Lu
more authors

Assessment of image similarity is fundamentally important to numerous multimedia applications. The goal of similarity assessment is to automatically assess the similarities among images in a perceptually consistent manner. In this paper, we interpret the image similarity assessment problem as an information fidelity problem. More specifically, we propose a feature-based approach to quantify the information that is present in a reference image and how much of this information can be extracted from a test image to assess the similarity between the two images. Here, we extract the feature points and their descriptors from an image, followed by learning the dictionary/basis for the descriptors in order to interpret the information present in this image. Then, we formulate the problem of the image similarity assessment in terms of sparse representation. To evaluate the applicability of the proposed feature-based sparse representation for image similarity assessment (FSRISA) technique, we apply FSRISA to three popular applications, namely, image copy detection, retrieval, and recognition by properly formulating them to sparse representation problems. Promising results have been obtained through simulations conducted on several public datasets, including the Stirmark benchmark, Corel-1000, COIL-20, COIL-100, and Caltech-101 datasets.

Published in:

Multimedia, IEEE Transactions on  (Volume:13 ,  Issue: 5 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.