By Topic

Comparison of Orthogonal Frequency-Division Multiplexing and ON–OFF Keying in Direct-Detection Multimode Fiber Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daniel J. F. Barros ; Department of Electrical Engineering, Stanford University, Stanford ; Joseph M. Kahn

We compare the performance of several direct-detection orthogonal frequency-division multiplexing (OFDM) schemes to that of ON-OFF keying (OOK) in combating modal dispersion in multimode fiber links. We review known OFDM techniques, including dc-clipped OFDM (DC-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM) and pulse-amplitude modulated discrete multitone (PAM-DMT). We describe an iterative procedure to achieve optimal power allocation for DC-OFDM and compare analytically the performance of ACO-OFDM and PAM-DMT. We also consider unipolar M -ary pulse-amplitude modulation ( M-PAM) with minimum mean-square error decision-feedback equalization (MMSE-DFE). For each technique, we quantify the optical power required to transmit at a given bit rate in a variety of multimode fibers. For a given symbol rate, we find that unipolar M-PAM with MMSE-DFE has a better power performance than all OFDM formats. Furthermore, we observe that the difference in performance between M-PAM and OFDM increases as the spectral efficiency increases. We also find that at a spectral efficiency of 1 bit/s/Hz, OOK performs better than ACO-OFDM using a symbol rate twice that of OOK. At higher spectral efficiencies, M -PAM performs only slightly better than ACO-OFDM using twice the symbol rate, but requires less electrical bandwidth and can employ analog-to-digital converters at a speed only 81% of that required for ACO-OFDM.

Published in:

Journal of Lightwave Technology  (Volume:29 ,  Issue: 15 )