By Topic

Localization potentials in AlGaN epitaxial films studied by scanning near-field optical spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pinos, A. ; School of Information and Communication Technology, Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden ; Liuolia, V. ; Marcinkevicius, S. ; Yang, J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Scanning near-field photoluminescence spectroscopy has been applied to evaluate bandgap fluctuations in epitaxial AlGaN films with the AlN molar fraction varying from 0.30 to 0.50. A dual localization pattern has been observed. The potential of the small-scale (<100 nm) localization, evaluated from the width of the photoluminescence spectra, is between 0 and 51 meV and increases with increased Al content. These potential variations have been assigned to small-scale compositional fluctuations occurring due to stress variations, dislocations, and formation of Al-rich grains during growth. Larger area potential variations of 25–40 meV, most clearly observed in the lower Al-content samples, have been attributed to Ga-rich regions close to grain boundaries or atomic layer steps. The density, size, and bandgap energy of these domains were found to be composition dependent. The lower bandgap domains were found to be strongly correlated with the regions with efficient nonradiative recombination.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 11 )