By Topic

Technology mapping for speed-independent circuits: Decomposition and resynthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents theory and practical implementation of a method for multi-level logic synthesis of speed-independent circuits. An initial circuit implementation is assumed to satisfy the monotonous cover conditions but is technology independent. The proposed method performs both combinational (inserting new gates) and sequential (inserting new memory elements) decomposition of complex gates in a given standard cell library, while preserving original behaviour and speed-independence. The algorithm applies known efficient algebraic factorization techniques from combinational multi-level logic synthesis, but achieves also boolean simplification and sequential decomposition. The method allows sharing of decomposed logic

Published in:

Advanced Research in Asynchronous Circuits and Systems, 1997. Proceedings., Third International Symposium on

Date of Conference:

7-10 Apr 1997