Cart (Loading....) | Create Account
Close category search window

Scaling Laws of Key Predistribution Protocols in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenjun Gu ; Microsoft, USA, Seattle, WA, USA ; Chellappan, S. ; Xiaole Bai ; Honggang Wang

Many key predistribution (KP) protocols have been proposed and are well accepted in randomly deployed wireless sensor networks (WSNs). Being distributed and localized, they are perceived to be scalable as node density and network dimension increase. While it is true in terms of communication/computation overhead, their scalability in terms of security performance is unclear. In this paper, we conduct a detailed study on this issue. In particular, we define a new metric called Resilient Connectivity (RC) to quantify security performance in WSNs. We then conduct a detailed analytical investigation on how KP protocols scale with respect to node density and network dimension in terms of RC in randomly deployed WSNs. Based on our theoretical analysis, we state two scaling laws of KP protocols. Our first scaling law states that KP protocols are not scalable in terms of RC with respect to node density. Our second scaling law states that KP protocols are not scalable in terms of RC with respect to network dimension. In order to deal with the unscalability of the above two scaling laws, we further propose logical and physical group deployment, respectively. We validate our findings further using extensive theoretical analysis and simulations.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.