By Topic

Noncoherent Capacity of Secret-Key Agreement With Public Discussion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anurag Agrawal ; Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India ; Zouheir Rezki ; Ashish J. Khisti ; Mohamed-Slim Alouini

We study the noncoherent capacity of secret-key agreement with public discussion over independent identically distributed (i.i.d.) Rayleigh fading wireless channels, where neither the sender nor the receivers have access to instantaneous channel state information (CSI). We present two results. At high signal-to-noise ratio (SNR), the secret-key capacity is bounded in SNR, regardless of the number of antennas at each terminal. Second, for a system with a single antenna at both the legitimate and the eavesdropper terminals and an arbitrary number of transmit antennas, the secret-key capacity-achieving input distribution is discrete, with a finite number of mass points. Numerically we observe that at low SNR, the capacity achieving distribution has two mass points with one of them at the origin.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:6 ,  Issue: 3 )