Cart (Loading....) | Create Account
Close category search window

Chance Constrained Programming for Optimal Power Flow Under Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Zhang ; Dept. of Simulation & Optimal Processes, Ilmenau Univ. of Technol., Ilmenau, Germany ; Pu Li

Solution approaches to chance constrained programming (CCP) have been recently developed and applied in many areas for optimization under uncertainty. Due to the nonlinear model with multiple uncertain variables as well as multiple output constraints, CCP has not been directly applied to optimal power flow (OPF) under uncertainty. The objective of this paper is twofold. First, we introduce the CCP approach to OPF under uncertainty and analyze the computational complexity of the chance constrained OPF. Second, the effectiveness of implementing a back-mapping approach and a linear approximation of the nonlinear model equations to solve the formulated CCP problem is investigated. Load power uncertainties are considered as multivariate random variables with correlated normal distribution. Based on both the nonlinear and the linearized model, results of a five-bus system and the IEEE 30-bus test system are presented to demonstrate the scope of chance constrained OPF.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 4 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.