By Topic

Asynchronous Output-Feedback Control of Networked Nonlinear Systems With Multiple Packet Dropouts: T–S Fuzzy Affine Model-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianbin Qiu ; Space Control & Inertial Technol. Res. Center, Harbin Inst. of Technol., Harbin, China ; Feng, G. ; Huijun Gao

This paper investigates the problem of robust output-feedback control for a class of networked nonlinear systems with multiple packet dropouts. The nonlinear plant is represented by Takagi-Sugeno (T-S) fuzzy affine dynamic models with norm-bounded uncertainties, and stochastic variables that satisfy the Bernoulli random binary distribution are adopted to characterize the data-missing phenomenon. The objective is to design an admissible output-feedback controller that guarantees the stochastic stability of the resulting closed-loop system with a prescribed disturbance attenuation level. It is assumed that the plant premise variables, which are often the state variables or their functions, are not measurable so that the controller implementation with state-space partition may not be synchronous with the state trajectories of the plant. Based on a piecewise quadratic Lyapunov function combined with an S-procedure and some matrix inequality convexifying techniques, two different approaches to robust output-feedback controller design are developed for the underlying T-S fuzzy affine systems with unreliable communication links. The solutions to the problem are formulated in the form of linear matrix inequalities (LMIs). Finally, simulation examples are provided to illustrate the effectiveness of the proposed approaches.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:19 ,  Issue: 6 )