By Topic

Optimal Parameter Estimation in Heterogeneous Clutter for High-Resolution Polarimetric SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gabriel Vasile ; Grenoble Image Speech Signal Automatics Laboratory, Centre National de la Recherche Scientifique, Grenoble, France ; Frédéric Pascal ; Jean-Philippe Ovarlez ; Pierre Formont
more authors

This letter presents a new estimation scheme for optimally deriving clutter parameters with high-resolution polarimetric synthetic aperture radar (POLSAR) data. The heterogeneous clutter in POLSAR data is described by the spherically invariant random vector model. Three parameters are introduced for the high-resolution POLSAR data clutter: the span, the normalized texture, and the speckle normalized covariance matrix. The asymptotic distribution of the novel span estimator is investigated. A novel heterogeneity test for the POLSAR clutter is also discussed. The proposed method is tested with airborne POLSAR images provided by the Office National d'Études et de Recherches Aerospatiales Radar Aéroporté Multi-spectral d'Etude des Signatures system.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:8 ,  Issue: 6 )