By Topic

Wafer-to-Wafer Alignment for Three-Dimensional Integration: A Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sang Hwui Lee ; Lab. for Phys. Sci., College Park, MD, USA ; Kuan-Neng Chen ; Lu, J.J.-Q.

This paper presents a review of the wafer-to-wafer alignment used for 3-D integration. This technology is an important manufacturing technique for advanced microelectronics and microelectromechanical systems, including 3-D integrated circuits, advanced wafer-level packaging, and microfluidics. Commercially available alignment tools provide prebonding wafer-to-wafer misalignment tolerances on the order of 0.25 μm. However, better alignment accuracy is required for increasing demands for higher density of through-strata vias and bonded interstrata vias, whereas issues with wafer-level alignment uniformity and reliability still remain. Three-dimensional processes also affect the alignment accuracy, although the misalignment could be reduced to certain extent by process control. This paper provides a comprehensive review of current research activities over wafer-to-wafer alignment, including alignment methods, accuracy requirements, and possible misalignments and fundamental issues. Current misalignment concerns of the major bonding approaches are discussed with detailed alignment results. The fundamental issues associated with wafer alignment are addressed, such as alignment mechanisms, uniformity, reproducibility, thermal mismatch, and materials. Alternative alignment approaches are discussed, and perspectives for wafer-to-wafer alignment are given.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 4 )