By Topic

Curved Glide-Reflection Symmetry Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seungkyu Lee ; Samsung Advanced Institute of Technology, Yongin ; Yanxi Liu

We generalize the concept of bilateral reflection symmetry to curved glide-reflection symmetry in 2D euclidean space, such that classic reflection symmetry becomes one of its six special cases. We propose a local feature-based approach for curved glide-reflection symmetry detection from real, unsegmented 2D images. Furthermore, we apply curved glide-reflection axis detection for curved reflection surface detection in 3D images. Our method discovers, groups, and connects statistically dominant local glide-reflection axes in an Axis-Parameter-Space (APS) without preassumptions on the types of reflection symmetries. Quantitative evaluations and comparisons against state-of-the-art algorithms on a diverse 64-test-image set and 1,125 Swedish leaf-data images show a promising average detection rate of the proposed algorithm at 80 and 40 percent, respectively, and superior performance over existing reflection symmetry detection algorithms. Potential applications in computer vision, particularly biomedical imaging, include saliency detection from unsegmented images and quantification of deviations from normality. We make our 64-test-image set publicly available.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 2 )