Cart (Loading....) | Create Account
Close category search window
 

Enhancing Privacy and Accuracy in Probe Vehicle-Based Traffic Monitoring via Virtual Trip Lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Hoh, B. ; Nokia Res. Center, Palo Alto, CA, USA ; Iwuchukwu, T. ; Jacobson, Q. ; Work, D.
more authors

Traffic monitoring using probe vehicles with GPS receivers promises significant improvements in cost, coverage, and accuracy over dedicated infrastructure systems. Current approaches, however, raise privacy concerns because they require participants to reveal their positions to an external traffic monitoring server. To address this challenge, we describe a system based on virtual trip lines and an associated cloaking technique, followed by another system design in which we relax the privacy requirements to maximize the accuracy of real-time traffic estimation. We introduce virtual trip lines which are geographic markers that indicate where vehicles should provide speed updates. These markers are placed to avoid specific privacy sensitive locations. They also allow aggregating and cloaking several location updates based on trip line identifiers, without knowing the actual geographic locations of these trip lines. Thus, they facilitate the design of a distributed architecture, in which no single entity has a complete knowledge of probe identities and fine-grained location information. We have implemented the system with GPS smartphone clients and conducted a controlled experiment with 100 phone-equipped drivers circling a highway segment, which was later extended into a year-long public deployment.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:11 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.