By Topic

Scalable Activity-Travel Pattern Monitoring Framework for Large-Scale City Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Youngki Lee ; Dept. of Comput. Sci., KAIST, Daejeon, South Korea ; SangJeong Lee ; Byoungjip Kim ; Jungwoo Kim
more authors

In this paper, we introduce Activity Travel Pattern (ATP) monitoring in a large-scale city environment. ATP represents where city residents and vehicles stay and how they travel around in a complex megacity. Monitoring ATP will incubate new types of value-added services such as predictive mobile advertisement, demand forecasting for urban stores, and adaptive transportation scheduling. To enable ATP monitoring, we develop ActraMon, a high-performanceATP monitoring framework. As a first step, ActraMon provides a simple but effective computational model of ATP and a declarative query language facilitating effective specification of various ATP monitoring queries. More important, ActraMon employs the shared staging architecture and highly efficient processing techniques, which address the scalability challenges caused by massive location updates, a number of ATP monitoring queries and processing complexity of ATP monitoring. Finally, we demonstrate the extensive performance study of ActraMon using realistic city-wide ATP workloads.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:11 ,  Issue: 4 )