By Topic

Effect of Grip Force and Training in Unstable Dynamics on Micromanipulation Accuracy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Su, E.L.M. ; Fac. of Electr. Eng., Univ. Teknol. Malaysia, Skudai, Malaysia ; Ganesh, G. ; Che Fai Yeong ; Chee Leong Teo
more authors

This paper investigates whether haptic error amplification using unstable dynamics can be used to train accuracy in micromanipulation. A preliminary experiment first examines the possible confounds of visual magnification and grip force. Results show that micromanipulation precision is not affected by grip force in both naive and experienced subjects. On the other hand, precision is increased by visual magnification of up to 10×, but not further for larger magnifications. The main experiment required subjects to perform small-range point-to-point movements in 3D space in an unstable environment which amplified position errors to the straight line between start and end point. After having trained in this environment, subjects performing in the free conditions show an increase in success rate and a decrease in error and its standard deviation relative to the control subjects. This suggests that this technique can improve accuracy and reliability of movements during micromanipulation.

Published in:

Haptics, IEEE Transactions on  (Volume:4 ,  Issue: 3 )