Cart (Loading....) | Create Account
Close category search window
 

Determination of Wireless Networks Parameters through Parallel Hierarchical Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vin-sen Feng ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Shih Yu Chang

We consider the problems of 1) estimating the physical locations of nodes in an indoor wireless network, and 2) estimating the channel noise in a MIMO wireless network, since knowing these parameters are important to many tasks of a wireless network such as network management, event detection, location-based service, and routing. A hierarchical support vector machines (H-SVM) scheme is proposed with the following advantages. First, H-SVM offers an efficient evaluation procedure in a distributed manner due to hierarchical structure. Second, H-SVM could determine these parameters based only on simpler network information, e.g., the hop counts, without requiring particular ranging hardware. Third, the exact mean and the variance of the estimation error introduced by H-SVM are derived which are seldom addressed in previous works. Furthermore, we present a parallel learning algorithm to reduce the computation time required for the proposed H-SVM. Thanks for the quicker matrix diagonization technique, our algorithm can reduce the traditional SVM learning complexity from O(n3) to O(n2) where n is the training sample size. Finally, the simulation results verify the validity and effectiveness for the proposed H-SVM with parallel learning algorithm.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.