By Topic

Scheduling Grid Tasks in Face of Uncertain Communication Demands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daniel M. Batista ; Institute of Computing, State University of Campinas, Avenida Albert Einstein, 1251 — 13084-971, Campinas — SP, Brazil ; Nelson L. S. da Fonseca

Grid scheduling is essential to Quality of Service provisioning as well as to efficient management of grid resources. Grid scheduling usually considers the state of the grid resources as well application demands. However, such demands are generally unknown for highly demanding applications, since these often generate data which will be transferred during their execution. Without appropriate assessment of these demands, scheduling decisions can lead to poor performance. Thus, it is of paramount importance to consider uncertainties in the formulation of a grid scheduling problem. This paper introduces the IPDT-FUZZY scheduler, a scheduler which considers the demands of grid applications with such uncertainties. The scheduler uses fuzzy optimization, and both computational and communication demands are expressed as fuzzy numbers. Its performance was evaluated, and it was shown to be attractive when communication requirements are uncertain. Its efficacy is compared, via simulation, to that of a deterministic counterpart scheduler and the results reinforce its adequacy for dealing with the lack of accuracy in the estimation of communication demands.

Published in:

IEEE Transactions on Network and Service Management  (Volume:8 ,  Issue: 2 )