By Topic

Optimal Sizing of Thyristor-Controlled Impedance for Smart Grids With Multiple Configurations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zeineldin, H.H. ; Masdar Inst. of Sci. & Technol., Abu Dhabi, United Arab Emirates ; El-Saadany, E.F. ; Salama, M.M. ; Kasem Alaboudy, A.H.
more authors

Smart grids have become one of the important and challenging topics due to the numerous benefits it can bring to the power system. In this context, distributed generation (DG) is expected to play a significant role. The smart grid can have multiple configurations depending on the smart grid operating strategy and system conditions. In smart grids, DG could be operated either grid connected or islanded. Such flexible and variable configuration results in variable fault current levels which could impact the operation of the existing protective devices on the distribution system. In this paper, it is proposed to optimally size thyristor-controlled impedance (TCI) of both inductive and capacitive type to manage the fault current levels under different smart grid configurations. The salient benefit is to avoid damage and delayed operation of protective devices due to the variability in fault currents with synchronous-based DG. The problem is formulated as a nonlinear programming (NLP) problem and the optimum size and type of the TCI is determined using particle swarm optimization (PSO). Results show that by optimally locating and sizing TCI, fault current levels under various smart grid configurations can be managed and thus avoiding protective device coordination failure and damage.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 3 )