By Topic

Nanoscale Optical Dielectric Rod Antenna for On-Chip Interconnecting Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hongyu Zhou ; Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO, USA ; Xi Chen ; David S. Espinoza ; Alan Mickelson
more authors

A nanoscale on-chip optical dielectric rod antenna is demonstrated in this paper. The antenna is designed and fabricated on a 200-mm silicon-on-insulator platform, using IMEC 193-nm-deep UV lithography. A 500-nm-thick polymer layer is designed and deposited to act as an asymmetric slab waveguide, confining the radiated wave within the layer. Full-wave analysis predicts antenna return loss above 25 dB, and end-fire gain greater than 9 dBi from 172 to 222 THz. Six antenna pairs with 1-, 3-, 5-, 7-, 12-, and 17- μm separations are fabricated. Corresponding transmissions are measured from 190 to 200 THz. Two on-chip optical signal hubs composed of 16 and 32 antennas designed for core-to-core interconnection for the next-generation multicore microprocessors are also demonstrated. Good agreement between the modeling and measurement is obtained.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:59 ,  Issue: 10 )