Cart (Loading....) | Create Account
Close category search window
 

Doppler-Hitchhiker: A Novel Passive Synthetic Aperture Radar Using Ultranarrowband Sources of Opportunity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ling Wang ; Dept. of Inf. & Commun. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China ; Yarman, C.E. ; Yazici, B.

In this paper, we present a novel synthetic aperture radar imaging modality that uses ultranarrowband sources of opportunity and passive airborne receivers to form an image of the ground. Due to its combined passive synthetic aperture and high Doppler resolution of the transmitted waveforms, we refer to this modality as the Doppler Synthetic Aperture Hitchhiker or Doppler-hitchhiker for short. Our imaging method first correlates the windowed signal obtained from one receiver with the scaled and translated version of the received signal in another window from the same or another receiver. We show that this correlation processing removes the transmitter-related variables from the phase of the resulting operator that maps the radiance of the scene to the correlated signals. We define a concept of passive Doppler scale factor using the radial velocities of the receivers. Next, we show that the scaled, translated, and correlated signal is the projection of the scene radiance onto the contours that are formed by the intersection of the surfaces of constant passive Doppler scale factor and ground topography. We use microlocal analysis to design a generalized filtered-backprojection operator to reconstruct the scene radiance from its projections. Our analysis shows that the resolution of the reconstructed images improves with the increased time duration and center frequency of the transmitted ultranarrowband signals. Our reconstruction method is analytic and therefore can be made computationally efficient. Furthermore, it easily accommodates arbitrary flight trajectories, nonflat topography, and system-related parameters. We present numerical simulations to demonstrate the performance of our imaging method.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.