By Topic

Spherical-Wave-Based Shaped-Beam Field Synthesis for Planar Arrays Including the Mutual Coupling Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Corcoles, J. ; Dept. de Tecnol. Electron. y de las Comun., Univ. Autonoma de Madrid, Madrid, Spain ; Rubio, J. ; Gonzalez, M.A.

An analytical method to synthesize shaped-beam patterns with planar arrays, based on the handling of spherical waves, is proposed. Translational Addition Theorems will be used here for two different purposes: (1) relating the spherical modes produced by each element in the array to calculate the mutual coupling effects, and (2) expressing the field radiated by each element in terms of spherical modes corresponding to the whole array, to carry out a spherical-wave synthesis procedure based on the orthogonal properties of spherical modes. This field synthesis method is based on the fact that any antenna radiated field can be expressed as a discrete series of weighted spherical vector wave functions and it only requires the a priori knowledge of the Generalized Scattering Matrix of each array element considered as isolated from the rest of the array elements.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 8 )