By Topic

Simultaneous Capacitive and Electrothermal Position Sensing in a Micromachined Nanopositioner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Zhu ; School of Engineering, Gold Coast Campus, Griffith University, Qld, Australia ; S. O. R. Moheimani ; M. R. Yuce

This letter reports a micromachined nanopositioner with capacitive actuation together with capacitive and electrothermal sensing on a single chip. With the actuation voltage of 60 V, the electrostatic actuator can achieve a maximum displacement of 2.32 μm. The displacement can be simultaneously measured using capacitive and electrothermal sensors. Both sensors are calibrated to operate at a sensitivity of 0.0137 V/V. The electrothermal sensor is found to display 1/f noise, which affects the low-frequency measurements obtained from this device. However, at higher frequencies, it displays a lower noise power spectral density when compared with the capacitive sensor. The comparisons of frequency responses, power consumptions, and noise performances are presented in this letter.

Published in:

IEEE Electron Device Letters  (Volume:32 ,  Issue: 8 )