By Topic

Integration of high-Q GaAs varactor diodes and 0.25 μm GaAs MESFET's for multifunction millimeter-wave monolithic circuit applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Two technologies are demonstrated whereby high-Q, vertical-structure, abrupt-junction varactor diodes are monolithically integrated with 0.25-μm GaAs MESFETs on semi-insulating GaAs substrates for multifunction millimeter-wave monolithic circuit applications. Diodes with various anode sizes have been realized with measured capacitance swings of >2.1:1 from 0 V to -4 V and series resistances of approximately 1 Ω. Diodes having a zero bias capacitance of 0.35 pF have Q's of >19000 (50 MHz) with -4 V applied to the anode. Under power bias conditions, the MESFETs have a measured gain of >6 dB at 35 GHz with extrapolated values for f t and fmax of 32 GHz and 78 GHz, respectively. Using these technologies, a monolithic Ka-band voltage controlled oscillator (VCO) containing a varactor diode, a 0.25-μm GaAs MESFET, and the usual MMIC passive components has been built and tested. At around 31 GHz, the circuit has demonstrated 60-mW power output with 300 MHz of tuning bandwidth

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:38 ,  Issue: 9 )