By Topic

A silicon resonant sensor structure for Coriolis mass-flow measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Enoksson, P. ; Dept. of Signals, Sensors & Syst., R. Inst. of Technol., Stockholm, Sweden ; Stemme, G. ; Stemme, E.

We present the first mass-flow sensor in silicon, based on the Coriolis-force principle. The sensor consists of a double-loop tube resonator structure with a size of only 9×18×1 mm. The tube structure is excited electrostatically into a resonance-bending or torsion vibration mode. A liquid mass flow passing through the tube induces a Coriolis force, resulting in a twisting angular motion phase shifted and perpendicular to the excitation. The excitation and Coriolis-induced angular motion are detected optically. The amplitude of the induced angular motion is linearly proportional to the mass flow and, thus, a measure thereof. The sensor can be used for measurement of fluid density since the resonance frequency of the sensor is a function of the fluid density. The measurements show the device to be a true mass-flow sensor with direction sensitivity and high linearity in the investigated flow range of as low as 0-0.5 g/s in either direction. A sensitivity of 2.95 (mV/V)/(g/s) and standard deviation for the measured values of 0.012 mV/V are demonstrated

Published in:

Microelectromechanical Systems, Journal of  (Volume:6 ,  Issue: 2 )