By Topic

Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Isaev, A.A. ; Lebedev (P.N.) Phys. Inst., Moscow, Russia ; Jones, D.R. ; Little, C.E. ; Petrash, G.G.
more authors

Comparative measurements of discharge electrical waveforms have been carried out with a Ne-H2-CuBr laser, a Ne-CuBr laser, and a Cu HyBrID laser, each of the same size and geometry, and under the same conditions of excitation. From the general similarity of the electrical characteristics of the HyBrID laser and the Ne-H2-CuBr laser, together with a reappraisal of the role of hydrogen, it is concluded that the main characteristics of these lasers (high efficiency, high average output power, and special features of their excitation pulse waveforms) can all be qualitatively explained if we assume that HBr and not hydrogen (molecular, atomic, or ionic) is the responsible agent which acts via the process of dissociative attachment of electrons to HBr during the interpulse period and during the early stages of the discharge current pulse

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 6 )