By Topic

A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rabii, S. ; Center for Integrated Syst., Stanford Univ., CA, USA ; Wooley, B.A.

Oversampling techniques based on sigma-delta (ΣΔ) modulation offer numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in low-voltage environment. This paper examines the design and implementation of a CMOS ΣΔ modulator for digital-audio A/D conversion that operates from a single 1.8-V power supply. A cascaded modulator that maintains a large full-scale input range while avoiding signal clipping at internal nodes is introduced. The experimental modulator has been designed with fully differential switched-capacitor integrators employing different input and output common-mode levels and boosted clock drivers in order to facilitate low voltage operation. Precise control of common-mode levels, high power supply noise rejection, and low power dissipation are obtained through the use of two-stage, class A/AB operational amplifiers. At a sampling rate of 4 MHz and an oversampling ratio of 80, an implementation of the modulator in a 0.8-μm CMOS technology with metal-to-polycide capacitors and NMOS and PMOS threshold voltages of +0.65 V and -0.75 V, respectively, achieves a dynamic range of 99 dB at a Nyquist conversion rate of 50 kHz. The modulator can operate from supply voltages ranging from 1.5-2.5 V, occupies an active area of 1.5 mm2, and dissipates 2.5 mW from a 1.8-V supply

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:32 ,  Issue: 6 )