By Topic

A moment-based unified approach to image feature detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghosal, S. ; Algorithm Res. Center, Sony Electron., Milpitas, CA, USA ; Mehrotra, R.

In this paper, a novel model-based approach is proposed for generating a set of image feature maps (or primal sketches). For each type of feature, a piecewise smooth parametric model is developed to characterize the local intensity function in an image. Projections of the intensity profile onto a set of orthogonal Zernike-moment-generating polynomials are used to estimate model-parameters and, in turn, generate the desired feature map. A small set of moment-based detectors is identified that can extract various kinds of primal sketches from intensity as well as range images. One main advantage of using parametric model-based techniques is that it is possible to extract complete information (i.e., model parameters) about the underlying image feature, which is desirable in many high-level vision tasks. Experimental results are included to demonstrate the effectiveness of proposed feature detectors

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 6 )