Cart (Loading....) | Create Account
Close category search window

VLSI array algorithms and architectures for RSA modular multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong-Jin Jeong ; Samsung Electron. Co., Seoul, South Korea ; Burleson, W.P.

We present two novel iterative algorithms and their array structures for integer modular multiplication. The algorithms are designed for Rivest-Shamir-Adelman (RSA) cryptography and are based on the familiar iterative Horner's rule, but use precalculated complements of the modulus. The problem of deciding which multiples of the modulus to subtract in intermediate iteration stages has been simplified using simple look-up of precalculated complement numbers, thus allowing a finer-grain pipeline. Both algorithms use a carry save adder scheme with module reduction performed on each intermediate partial product which results in an output in carry-save format. Regularity and local connections make both algorithms suitable for high-performance array implementation in FPGA's or deep submicron VLSI. The processing nodes consist of just one or two full adders and a simple multiplexor. The stored complement numbers need to be precalculated only when the modulus is changed, thus not affecting the performance of the main computation. In both cases, there exists a bit-level systolic schedule, which means the array can be fully pipelined for high performance and can also easily be mapped to linear arrays for various space/time tradeoffs.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:5 ,  Issue: 2 )

Date of Publication:

June 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.