By Topic

The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xucai Chen ; Center for Biomed. Ultrasound, Rochester Univ., NY, USA ; D. Phillips ; K. Q. Schwarz ; J. G. Mottley
more authors

A new formulation for obtaining the absolute backscatter coefficient from pulse-echo measurements is presented. Using this formulation, performing the diffraction correction and system calibration is straightforward. The diffraction correction function for the measurement of backscatter coefficient and the acoustic coupling function for a pulse-echo system are defined. Details of these functions for two very useful cases are presented: a flat disk transducer and a spherically focused transducer. Approximations of these functions are also provided. For a flat disk transducer, the final formulation appears as a modification to the established Sigelmann-Reid formulation. For a focused transducer, the final correction is a weak function of frequency when the scattering volume is near the focal area, rather than the frequency squared dependence proposed by earlier investigators.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:44 ,  Issue: 2 )