By Topic

A matrix method for modeling electroelastic moduli of 0-3 piezo-composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. Levassort ; LUSSI/GIP Ultrasons BP, Tours, France ; M. Lethiecq ; D. Certon ; F. Patat

A model is proposed to predict the electroelastic moduli of 0-3 connectivity piezo-composites from which parameters such as longitudinal wave velocity and thickness mode coupling factor can be deduced. The composite, a polymer loaded with ceramic particles, is represented by a unit cell, and a matrix manipulation is shown to be a practical way to perform a generalization of the series and parallel analysis used for 2-2 connectivity composites. The anisotropy of the ceramic phase is taken into account, and its effect on the properties of the composite is shown. The model is then used to optimize composite performance and to choose the two constituents through comparison of results obtained using several commercial polymers and ceramics.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:44 ,  Issue: 2 )