Cart (Loading....) | Create Account
Close category search window
 

Neural classifiers and statistical pattern recognition: applications for currently established links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Osman, H. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, Ont., Canada ; Fahmy, M.

Recent research has linked backpropagation (BP) and radial basis function (RBF) network classifiers, trained by minimizing the standard mean square error (MSE), to two main topics in statistical pattern recognition (SPR), namely the Bayes decision theory and discriminant analysis. However, so far, the establishment of these links has resulted in only a few practical applications for training, using, and evaluating these classifiers. The paper aims at providing more of these applications. It first illustrates that while training a linear output BP network, the explicit utilization of the network discriminant capability leads to an improvement in its classification performance. Then, for linear output BP and RBF networks, the paper defines a new generalization measure that provides information about the closeness of the network classification performance to the optimal performance. The estimation procedure of this measure is described and its use as an efficient criterion for terminating the learning algorithm and choosing the network topology is explained. The paper finally proposes an upper bound on the number of hidden units needed by an RBF network classifier to achieve an arbitrary value of the minimized MSE. Experimental results are presented to validate all proposed applications

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 3 )

Date of Publication:

Jun 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.