By Topic

Developing a new transformer fault diagnosis system through evolutionary fuzzy logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yann-Chang Huang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Hong-Tzer Yang ; Ching-Lien Huang

To improve the diagnosis accuracy of the conventional dissolved gas analysis (DGA) approaches, this paper proposes an evolutionary programming (EP) based fuzzy system development technique to identify the incipient faults of the power transformers. Using the IEC/IEEE DGA criteria as references, a preliminary framework of the fuzzy diagnosis system is first built. Based on previous dissolved gas test records and their actual fault types, the proposed EP-based development technique is then employed to automatically modify the fuzzy if-then rules and simultaneously adjust the corresponding membership functions. In comparison to results of the conventional DGA and the artificial neural networks (ANN) classification methods, the proposed method has been verified to possess superior performance both in developing the diagnosis system and in identifying the practical transformer fault cases

Published in:

IEEE Transactions on Power Delivery  (Volume:12 ,  Issue: 2 )