By Topic

Autonomous exploration: driven by uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Whaite ; Centre for Intelligent Machines, McGill Univ., Montreal, Que., Canada ; F. P. Ferrie

Passively accepting measurements of the world is not enough, as the data we obtain is always incomplete, and the inferences made from it uncertain to a degree which is often unacceptable. If we are to build machines that operate autonomously, they will always be faced with this dilemma, and can only be successful if they play a much more active role. This paper presents such a machine. It deliberately seeks out those parts of the world which maximize the fidelity of its internal representations, and keeps searching until those representations are acceptable. We call this paradigm autonomous exploration, and the machine an autonomous explorer. This paper has two major contributions. The first is a theory that tells us how to explore, and which confirms the intuitive ideas we have put forward previously. The second is an implementation of that theory. In our laboratory, we have constructed a working autonomous explorer and here, for the first time, show it in action. The system is entirely bottom-up and does not depend on any a priori knowledge of the environment. To our knowledge, it is the first to have successfully closed the loop between gaze planning and the inference of complex 3D models

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 3 )