By Topic

A new encoding method of genetic algorithms towards parameter identification of fuzzy expert systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mei-Shiang Chang ; Dept. of Civil Eng., Nat. Central Univ., Chung-Li, Taiwan ; Huey-Kuo Chen

The membership functions of fuzzy expert systems need a systematic, self-learning method instead of a subjective tuning method in order to increase the performance of the fuzzy model. The genetic-algorithm learning method is consequently employed. The rule-based encoding scheme would bring the redundant information for the genetic algorithm by repeatedly representing the similar membership function in an individual. The new encoding method, which is a parameter-based encoding scheme, would diminish the redundant representation of fuzzy parameters. This method would separate the data structures of fuzzy rules and fuzzy parameters in the genetic-algorithm learning method. This method should efficiently use the memory resources of computers and increase the dimensions of the solved problem. Then, a numerical example and the learning results are demonstrated. Discussions about the effects of population size, reproduction method, crossover rate, mutation rate and fitness scaling are included. Finally, some conclusions are presented

Published in:

Fuzzy Systems Symposium, 1996. Soft Computing in Intelligent Systems and Information Processing., Proceedings of the 1996 Asian

Date of Conference:

11-14 Dec 1996