By Topic

Holographic implementation of a fully connected neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ken-Yuh Hsu ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Li, Hsin‐Yu ; Psaltis, D.

A holographic implementation of a fully connected neural network is presented. This model has a simple structure and is relatively easy to implement, and its operating principles and characteristics can be extended to other types of networks, since any architecture can be considered as a fully connected network with some of its connections missing. The basic principles of the fully connected network are reviewed. The optical implementation of the network is presented. Experimental results which demonstrate its ability to recognize stored images are given, and its performance and analysis are discussed based on a proposed model for the system. Special attention is focused on the dynamics of the feedback loop and the tradeoff between distortion tolerance and image-recognition capability of the associative memory

Published in:

Proceedings of the IEEE  (Volume:78 ,  Issue: 10 )