By Topic

A novel CMOS implementation of double-edge-triggered flip-flops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shih-Lien Lu ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Ercegovac, M.

A CMOS implementation of a D-type double-edge-triggered flip-flop (DET-FF) is presented. A DET-FF changes its state at both the positive and the negative clock edge transitions. It has advantages with respect to both system speed and power dissipation. The design presented requires little overhead in circuit complexity. This CMOS D-type DET-FF is capable of operating at more than 50 MHz, which gives an equivalent system frequency of 100 MHz

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:25 ,  Issue: 4 )