Cart (Loading....) | Create Account
Close category search window
 

Application of vector optimization employing modified genetic algorithm to permanent magnet motor design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong-Joon Sim ; Steel Process Div., RIST, Pohang, South Korea ; Hyun-Kyo Jung ; Song-yop Hahn ; Jong-Soo Won

This paper presents a method to solve the vector optimization problem that determines both the noninferior solution set and the best compromise solution employing a modified genetic algorithm. The algorithm differs from the conventional one in the definition of fitness value and convergence criterion. Some parameters of the algorithm are adjusted to the vector optimization. The algorithm also contains the additional routine for searching the best compromise solution. This method is applied to the optimal design of the permanent magnet synchronous motor for which two objective functions regarding motor efficiency and weight are used

Published in:

Magnetics, IEEE Transactions on  (Volume:33 ,  Issue: 2 )

Date of Publication:

Mar 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.