By Topic

Finite element modeling of conducting shells for eddy current NDE problems using “impedance-type” interface conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Z. Badics ; Nucl. Fuel Inds. Ltd., Osaka, Japan ; Y. Matsumoto ; S. Kojima ; Y. Usui
more authors

A 3D finite element scheme is developed to calculate eddy current probe responses (impedance or induced emf changes of coils) due to conducting shells in eddy current NDE (nondestructive evaluation) problems. These problems are related to the eddy current inspection of copper and magnetite deposit zones of steam generator tubing in PWR atomic power plants. The finite element scheme uses impedance interface conditions to model the deposit shells and calculates the probe responses by performing integrals over the shell surfaces, thereby ensuring high accuracy even if the probe signal is very small. Two benchmark arrangements are investigated. One, which has an analytical solution, is a conducting thin plate with an impedance probe. The other is a stainless steel tube with a copper shell attached to its outer surface and scanned by a transmitter-receiver probe. In both problems, the calculated probe responses show good agreement with the analytical and experimental data

Published in:

IEEE Transactions on Magnetics  (Volume:33 ,  Issue: 2 )