Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Computation of dynamic program slices for unstructured programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Korel, B. ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL, USA

A dynamic program slice is an executable part of the program whose behaviour is identical, for the same program input, to that of the original program with respect to a variable(s) of interest at some execution position. The existing algorithms of dynamic slice computation use data and control dependencies to compute dynamic slices. These algorithms are limited to structured programs because they may compute incorrect dynamic slices for unstructured programs, due to the limitations of control dependencies that are used to compute dynamic slices. In this paper, we present a novel approach to dynamic slice computation for unstructured programs. The approach employs the notion of a removable block in finding dynamic program slices. Dynamic slices are derived by identifying not only those parts of program execution that contribute to the computation of the value of a variable of interest, but also those parts of program execution that do not contribute to the computation of the variable value. Data dependencies are used to identify contributing computations, whereas removable blocks are used to identify noncontributing computations. We have proved that the presented dynamic slicing algorithms correctly compute dynamic slices. In addition, these algorithms may compute more accurate dynamic slices compared to existing algorithms that use control dependencies. The presented algorithms have been implemented in a tool that supports dynamic slicing for Pascal programs

Published in:

Software Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 1 )