By Topic

Materials mechanics and mechanical reliability of flip chip assemblies on organic substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schubert, A. ; Fraunhofer Inst. for Reliability & Microintegration, Berlin, Germany ; Dudek, R. ; Michel, B. ; Reichl, H.
more authors

This paper demonstrates a combined approach of numerical analysis and experimental investigations to study the mechanical reliability of flip chip solder joints. The effect of various design parameters like bump geometry, “soft” and “hard” underfill, and used solder mask on the thermal fatigue life of solder joints is discussed. Since special attention has been directed towards Flip Chip on Board (FCOB) assemblies, constitutive properties of polymeric and solder materials are discussed in detail. The solder is modeled using a nonlinear constitutive law with time dependent (creep) and time independent plastic strains. Furthermore, material testing shows that the underfill and solder mask materials might be considered as linear viscoelastic with temperature time shift properties. Thermal mismatch between the materials assembled is often the main reason for thermally induced stresses. Thermal cycling (125°C...-55°C...125°C) is therefore the load generally used in the 3D non-linear finite element analysis. Calculation results of the solder bump deformation due to temperature changes are accompanied by experimental deformation analysis. The used MicroDAC method is based on algorithms of local object tracking in images obtained from electron scanning microscopy. The measured deformation fields were utilized for proper materials selection and processing, as well as for verification of finite element analysis

Published in:

Advanced Packaging Materials. Proceedings., 3rd International Symposium on

Date of Conference:

9-12 Mar 1997