By Topic

Robust clustering methods: a unified view

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dave, R.N. ; Dept. of Mech. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Krishnapuram, R.

Clustering methods need to be robust if they are to be useful in practice. In this paper, we analyze several popular robust clustering methods and show that they have much in common. We also establish a connection between fuzzy set theory and robust statistics, and point out the similarities between robust clustering methods and statistical methods such as the weighted least-squares technique, the M estimator, the minimum volume ellipsoid algorithm, cooperative robust estimation, minimization of probability of randomness, and the epsilon contamination model. By gleaning the common principles upon which the methods proposed in the literature are based, we arrive at a unified view of robust clustering methods. We define several general concepts that are useful in robust clustering, state the robust clustering problem in terms of the defined concepts, and propose generic algorithms and guidelines for clustering noisy data. We also discuss why the generalized Hough transform is a suboptimal solution to the robust clustering problem

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:5 ,  Issue: 2 )