Cart (Loading....) | Create Account
Close category search window

Dynamic non-Singleton fuzzy logic systems for nonlinear modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mouzouris, G.C. ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Mendel, J.M.

We investigate dynamic versions of fuzzy logic systems (FLSs) and, specifically, their non-Singleton generalizations (NSFLSs), and derive a dynamic learning algorithm to train the system parameters. The history-sensitive output of the dynamic systems gives them a significant advantage over static systems in modeling processes of unknown order. This is illustrated through an example in nonlinear dynamic system identification. Since dynamic NSFLS's can be considered to belong to the family of general nonlinear autoregressive moving average (NARMA) models, they are capable of parsimoniously modeling NARMA processes. We study the performance of both dynamic and static FLSs in the predictive modeling of a NARMA process

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:5 ,  Issue: 2 )

Date of Publication:

May 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.