By Topic

Dynamic variable ordering for ordered binary decision diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rudell, R. ; Synopsys, Inc., Mountain View, CA, USA

The ordered binary decision diagram (OBDD) has proven useful in many applications as an efficient data structure for representing and manipulating Boolean functions. A serious drawback of OBDD's is the need for application-specific heuristic algorithms to order the variables before processing. Further, for many problem instances in logic synthesis, the heuristic ordering algorithms which have been proposed are insufficient to allow OBDD operations to complete within a limited amount of memory. The paper proposes a solution to these problems based on having the OBDD package itself determine and maintain the variable order. This is done by periodically applying a minimization algorithm to reorder the variables of the OBDD to reduce its size. A new OBDD minimization algorithm, called the sifting algorithm, is proposed and appears especially effective in reducing the size of the OBDD. Experiments with dynamic variable ordering on the problem of forming the OBDD's for the primary outputs of a combinational circuit show that many computations complete using dynamic variable ordering when the same computation fails otherwise.

Published in:

Computer-Aided Design, 1993. ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 1993