Cart (Loading....) | Create Account
Close category search window
 

A harmonic domain computational package for nonlinear problems and its application to electric arcs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Acha, E. ; Toronto Univ., Ont., Canada ; Semlyen, A. ; Rajakovic, N.

A general package for harmonic-domain computation is described. It consists of a set of routines which can be used by developers of programs for power system harmonic applications. The most basic routines have been listed. The package represents nonlinear characteristics by fitting the characteristic with a polynomial, for which special harmonic domain processing via convolutions has been developed, or by directly applying a fast Fourier transform. A model in the form of a differential equation is derived for the electric arc. It is based on simple energy balance considerations and therefore is expected to be generally valid. The computational results compare well with existing measurements. The arc model can be used for discharge lamps or for arc furnaces

Published in:

Power Delivery, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Jul 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.