By Topic

Exploiting large on-chip memory space through data recomputation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hakduran Koc ; University of Houston, Clear Lake, USA ; Mahmut Kandemir ; Ehat Ercanli

This paper presents a novel on-chip memory space utilization strategy for architectures that accommodate large on-chip software-managed memories. In such architectures, the access latencies of data blocks are typically proportional to the distance between the processor and the requested data. Considering such an on-chip memory hierarchy, we propose to recompute the value of an on-chip data, which is far from the processor, using the closer data elements instead of directly accessing the far data if it is beneficial to do so in terms of performance. This paper presents the details of a compiler algorithm that implements the proposed approach and reports the experimental data collected using six data-intensive applications programs. Our experimental evaluation indicates 8.2% performance improvement, on the average, over a state-of-the-art on-chip memory management strategy and shows consistent improvements for varying on-chip memory sizes and different data access latencies.

Published in:

23rd IEEE International SOC Conference

Date of Conference:

27-29 Sept. 2010